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DEVELOPMENTS IN A COMPUTER METHOD FOR 

FLUID-STRUCTURE INTERACTIONS 

By Richard Madden and John C ,  O'CaSlahan 

Northeastern Uni versi ty 

SUMMARY 

A computer method has been developed for the analysis of the inter-  

action of a f luid and a structure.  The technique i s  a coupling of a method of 

characteristics solution of the inviscid,  non-heat conducting, unsteady f luid 

dynamic equations in cylindrical coordinates and the solution of a se t  of equations 

for  the structure.  The method has been used to  generate a computer program applicable 

to the determination of the flow f ie ld  inside a rigid parachute configuration and 

the dynamic deflection of a circular l inear  membrane which has been placed into an 

i n i t i a l l y  uniform free stream. Plots are presented for the flow f i e ld  inside the 

parachute and for  the response of the membrane and the flow f i e ld  a t  various times. 

INTRODUCTION 

The present work presents resul ts  from the early stages of a program 

whose ultimate objective i s  the theoretical prediction of the fabric s t resses  in a 

deploying parachute. A complete theoretical analyses of th i s  phenomenon has not 

as yet been attempted due to  the complexity of the fluid-structure interaction. 

Analyses have therefore been constrained to  simplified models for e i ther  the 

structure or  the f luid dynamics. For example, a recent theoretical analysis,  

ref .  1 ,  has assumed a simple model for  the flow f i e ld  inside the canopy and con- 

centrated on the material behavior. Peak stresses from th i s  analysis compare favor- 

ably with the limited se t  of experimental resu l t s ,  however, the simplified aero- 

dynamic model may not be applicable to  some of the other problems of in t e res t .  

This deficiency has been recognized in re f .  1 .  



Another pertinent analysis has been presented in r e f .  2 .  Phis paper 

presents the resul ts  from a computer program for  analyzing the aerodynamics inside 

a rigid cup shaped body. The results compare well with experimental values for  

pressure on the cup. The method, however, re l ies  on a transformation of the region 

between the shock and the cup which may be d i f f i cu l t  t o  apply for the configurations 

encountered during parachute inf lat ion.  

The present approach i s  designed to incorporate both a good representation 

of the flow f i e l d  and a model for  the parachute. The program i s  not as yet  suff ic-  

iently advanced to handle parachutes, however, i t  has been used to  analyze the 

interaction of an i n i t i a l l y  uniform free stream on a l inear  membrane and t o  give 

values for  the resulting flow f ie ld  and membrane deflections. 

The method u t i l i zes  a pair  of computer programs which were developed 

separately and then coupled implicit ly.  The aerodynamic computer program solves 

the invi scid non-heat conducting unsteady f lu id  dynamic equations in cylindrical 

coordinates by u t i l iz ing  an approach based on the method of character is t ics .  The 

approach i s  similar to  that  developed in r e f .  3. The s t ructure,  here assumed to 

be a membrane, i s  a lso solved using f i n i t e  difference techniques. The present 

method i s  suff ic ient ly  general so that  any structural model may be substituted 

for the membrane by merely changing one subroutine. 

SYMBOLS 

isentropic sound speed 

Fressure coeffi cient 

function of entropy 

arbi t rary function 

time step 

spacing between points on membrane 

tension per unit length of membrane 



pressure 

radi a1 coordinate 

entropy 

time 

radi a1 velocity 

velocity normal t o  boundary 

axi a1 velocity 

vel oci t y  tangenti a1 t o  boundary 

membrane deflect ion 

axial  coordinate 

angle between r and 5 axes 

($0 + $i) = 2 

r a t i o  of spec i f i c  heats 

pressure difference across membrane 

tangenti a1 coordinate t o  boundary 

angle between projection of inward normal t o  b icharac te r i s t i c  on 
r ,  z ,  plane and r ax i s .  

= Q  -= 
normal coordinate t o  boundary 

f l u id  density 

surface densi ty  of membrane 



Subscr ip ts  : 

f 

i 

ti1 

0 

P 

f r e e  stream 

i t h  b i c h a r a c t e r i s t i c  

membrane 

updated t ime p lane 

p a r t i  c l  e  pa th  

GOVERNING EQUATIONS 

The complete model o f  a  f l u i d  i n t e r a c t i n g  w i t h  a  membrane r e q u i r e s  t he  

general  govern ing equat ions desc r i b i ng  t he  mot ion  o f  t h e  membrane and t h e  f l u i d  

t oge the r .  Obta in ing  an exac t  s o l u t i o n  t o  t h i s  s e t  o f  equat ions w i t h  t h e i r  assoc- 

i a t e d  coupled, t ime  dependent, boundary cond i t i ons  would be a  f o rm i t ab le ,  i f  n o t  

imposs ib le  task .  Therefore,  i t  seems adv isab le  t o  approach t h i s  problem numeri- 

c a l l y  by develop ing separate computer programs and then  coup l ing  them th rough t h e  

boundary cond i t i ons .  Th i s  r equ i res  a  model f o r  t he  f l u i d  and a  model f o r  t h e  

membrane. The models u t i l i z e d  i n  t he  p resen t  approach a re  discussed i n  t h e  f o l l ow -  

i n g  sec t i ons .  

F l u i d  Model 

The unsteady i n v i s c i d  axisymmetr ic equat ions a re  used t o  model t h e  

f l u i d  p o r t i o n  o f  t h e  i n t e r a c t i o n .  These equat ions may be w r i t t e n  as f o l l o w s :  

C o n t i n u i t y  : 

Radia l  momentum: 

Axi a1 momentum: 



Conservat ion o f  en t ropy  along a  p a r t i c l e  pa th :  

Equat ion o f  s t a t e :  

P = P  ( P ,  S )  

where: 

and p i s  t h e  dens i t y ,  P t h e  pressure,  s  t h e  ent ropy,  r and U t he  r a d i a l  coo rd ina te  

and v e l o c i t y  , r e s p e c t i v e l y ;  z and V t he  a x i a l  coord ina te  and v e l o c i t y ,  r e s p e c t i v e l y ;  

t t h e  t ime,  and c  i s  t he  i s e n t r o p i c  sound speed. 

Equat ion ( I d )  i s  used t o  e l i m i n a t e  t h e  p d e r i v a t i v e  i n  t h e  c o n t i n u i t y  equa t ion  

producing : 

The a p p l i c a t i o n  o f  t h e  method o f  c h a r a c t e r i s t i c s  t o  equat ions ( 1 )  and ( 2 )  y i e l d s  

two se ts  o f  c h a r a c t e r i s t i c  equat ions (see f o r  example, r e f .  3 ) ,  p a r t i c l e  pa ths  

which a r e  sur faces  o f  poss ib l e  d i s c o n t i n u i t y  i n  t h e  en t ropy  d e r i v a t i v e  and t h e  

usual  b i  c h a r a c t e r i  s t i  c  equat ions. Each s e t  i s  composed o f  a  s lope and compatabi 1  i t y  

equat ion.  

Slope equat ions a1 ong p a r t i c l e  paths : 

B i  c h a r a c t e r i s t i c s  : 

where Q i s  t h e  angle measured between t he  p r o j e c t i o n  o f  t h e  inward normal t o  t h e  

b i c h a r a c t e r i s t i c  on to  t he  r, z p lane and t h e  r a x i s .  

C o m p a t i b i l i t y  equa t ion  along p a r t i c l e  paths:  

Equat ion (2 )  may be u t i l i z e d  as a  c o m p a t i b i l i t y  r e l a t i o n s h i p  along a  p a r t i c l e  

path.  



Compati bi 1 i t y  equation along bicharacteristics:  

- 2 
d t d t d V  - - p C S  dU + p c s i n ~  - - d P  + p  c cos Q - d t 

d where represents the total  derivative along a bicharacteristic:  

and : 

2 a u a v 
= sin - a r  - s i n ~ c o s ~ ( $  + 

U + cos2 Q + - a z r 

An a l ternate  form of equations (2) and (5)  can be obtained using the perfect gas 

re1 a l i  on : 

P = E(s) p Y  

And defining : ,- 

where E i s  a function of entropy and y i s  the r a t io  of specific heats. 

The second form of the compatibility equations then becomes: 

When a point i s  in the vicini ty  of a physical boundary, i t  i s  convenient to  use 

normal ( 5 )  and tangential ( Q )  coordinates with respect t o  the physical boundary and 

therefore, equations ( 6 )  and (7)  may be written as:  

where 8 = 8 - a i s  the character is t ic  angle measured from the membrane normal, a i s  

the angle between the r and the 5 axis ,  and U and 'i7 are the normal and tangential 

velocities to the membrane, respectively: 



- 
a r ~ d :  U = U cosQ -t- V s in  CJ 

- 
V = V c o s Q -  us in^ 

U NOTE: the t e n  i s  unchanged in the transformation of coordinates. 
These equations, which are similar t o  those in r e f .  4 ,  are used t o  generate the 

f i n i t e  difference equations. 

The boundary conditions on the f luid are that  the radial velocity a t  the a x i s  of 

symmetry i s  zero and that  the velocity of a f lu id  par t ic le  adjacent to  a physical 

boundary i s  zero relat ive to  the boundary. 
The i n i t i a l  condition for  the f luid portion of the problem, will depend upon the 

particular problem under consideration and therefore these wi 11 be presented in the 

results section. 

Membrane Model 

The membrane i s  assumed to be a shallow axisymmetric shell which i s  restr ic ted to  

small deflections. The partial  differential  equation of motion i s ,  then: 

where N i s  the tension per unit length of membrane, W the normal deflection, p, the 

material surface density, and AP the pressure difference across the membrane. 
The boundary conditions on the membrane are tha t  i t  i s  fixed a t  I t s  outer edge and 
that the slope i s  zero a t  the origin.  The pressure difference across the membrane 

i s  obtained from the f lu id  dynamic analysis. 



F I N I T E  DIFFERENCE EQUATIONS 

F l u i d  Model 

The f i n i t e  d i f f e r e n c e  equ i va l en t s  o f  equa t ions  3, 4, 6,  7 ,  8, and 9 a r e  

g i ven  as f o l l o w s :  

Slope equat ions a1 ong 

P a r t i c l e  Paths: 

r = ro 
P  

- U h  
P  

B i  c h a r a c t e r i  s t i  cs : 

r = ro i - (Ui + Ci COS Qi) h  

Compati b i  1 i ty equa t ions  a1 ong 

P a r t i c l e  paths : 

O r :  

Where: 

And: 

B i  c h a r a c t e r i  s  t i  cs : 

1  2 a u pi o o  + s i n  Qi Vo + cos Qi Uo + F C o h  [ s i n  Qi 

2 - s i n  Q c s  Q ( + ) a r + 0 s  ui 
= K~ 



Or: 

b 

- s i n  Tii cos Bi 2 -  a B +  
e-i % = Ki 

Where : 

si = [ a v s i n 2  Q " a r - s i n  Q cos Q (g  + " )  a r + cos2 0 - az + !Ii 

I n  these equat ions,  h  i s  t h e  t ime s tep;  s u b s c r i p t  o  represen ts  q u a n t i t i e s  i n  t h e  

updated t ime  p lane  a t  which t h e  s o l u t i o n  i s  des i r ed ;  s u b s c r i p t s  i and p,  r ep resen t  

values i n  t h e  back t ime  p lane  ( t o  - h )  on t h e  c h a r a c t e r i s t i c  con iod  and t h e  p a r t -  

i c l e  path,  r e s p e c t i v e l y .  

Equat ions (11)  t o  (16)  a re  w r i t t e n  i n  a  form which i s  accura te  t o  t h e  
3  o rde r  o f  t h e  t ime  s tep  squared. Equat ion (15)  may appear a t  f i r s t  t o  be o f  0 ( h  ) ,  

however, t h e  angle  0 i s  n o t  a l lowed t o  va ry  a long  t h e  b i c h a r a c t e r i s t i c ;  and thus ,  
2  t he  equa t ion  i s  o f  0 ( h  ) .  A d d i t i o n a l l y ,  equa t ions  (15)  and (16) use p o s i t i o n s  i n  

2  t he  back t ime  p lane  which have been l oca ted  accura te  o n l y  t o  0 ( h  ) ,  see equa t ions  
2 (11)  and (12 ) .  There fo re ,  equa t ion  (16)  i s  a l s o  0 ( h  ) .  T h i s  scheme y i e l d s  an 

3 e x p l i c i t  s o l u t i o n  i n  c o n t r a s t  t o  t h e  0 ( h  ) scheme which i s  i m p l i c i t  and t h e r e f o r e  

r equ i r es  i t e r a t i o n s  . The computing t ime f o r  t h i s  scheme i s  consequent ly  much 
3 sma l l e r  than  t h e  pure  0 ( h  ) scheme. The p resen t  s e t  o f  equat ions does, however, 

i n v o l v e  i n f o m a t i o n  f rom bo th  t ime  p lanes,  and t h e r e f o r e ,  may be expected t o  g i v e  
2 b e t t e r  r e s u l t s ,  i n  areas of h i g h  g rad ien t s ,  than  t h e  usual  0 ( h  ) scheme. It shou ld  

be noted, however, t h a t  t h e  accurac ies quoted a r e  f o r  an i n d i v i d u a l  t ime  s tep .  The 

f i n a l  s o l u t i o n  i s  reduced by one o r d e r  a f t e r  a  number o f  t ime  s teps and t h e r e f o r e  

i t  i s  accurate  t o  t h e  o r d e r  o f  t he  t ime s t e p  i t s e l f .  

I n  genera l ,  equat ions (13)  t o  (16)  c o n t a i n  t h e  seven unknowns, oo, Uo, 



a u a v a u a v (-) , (--) , (---) , (----) , however, a  p roper  s e l e c t i o n  o f  c h a r a c t e r i s t i c  angles a r  o  az o  az o  a r  o  

w i l l  e l i m i n a t e  some o f  t h e  unknown d e r i v a t i v e s .  Once t h e  r e q u i r e d  number o f  char-  

a c t e r i s t i c s  a re  se lec ted ,  t he  equat ions may be so lved  f o r  Po, Uo, Vo t o  y i e l d  

values on a  spac ia l  g r i d  superimposed on t he  f l o w  f i e l d  a t  each increment i n  t ime.  

SPACIAL DERIVATIVES 

The spac ia l  d e r i v a t i v e s  o f  the  f u n c t i o n s  Kg, Si appearing i n  equat ions 

(13)  t o  (16)  a re  ob ta ined  f rom a  T a y l o r  expansion; f o r  example, cons ider  t h e  d e r i v -  

a t i v e  i n  t h e  r d i r e c t i o n  o f  some a r t i t r a r y  f u n c t i o n  F. 
A 

a F a 2 ~  F ( r  - 6 r ,  Z )  = F ( r ,  Z )  - 6 r 2  ( r ,  Z )  + - Z )  
a r  

where r, z  i s  t he  p o i n t  a t  which t h e  d e r i v a t i v e  i s  d e s i r e d  and 6r l ,  6 r 2  a re  t h e  

fo rward  and backward d e r i v a t i v e  spac i  ngs r e s p e c t i v e l y  . 
d So lv i ng  f o r  F  g ives :  

S i m i l a r  express ions f o r  o t h e r  p a r t i a l  d e r i v a t i v e s  can be found accurate 

t o  t h e  o r d e r  o f  t he  d e r i v a t i v e  spacing squared. Note, equa t ion  (17)  i s  a p p l i c a b l e  

t o  fo rward  and backward d i f f e rences ,  as w e l l  as c e n t r a l  d i f f e r e n c e s .  The fo rward  

and backward d i f f e r e n c e s  a r e  r e q u i r e d  when t h e  p o i n t  a t  which t h e  d e r i v a t i v e  i s  

des i r ed  i s  near a  boundary. 

MEMBRANE MODEL 

The f i n i t e  d i f f e r e n c e  equ i va len t  o f  equa t ion  (10)  may be w r i t t e n  as: 



t h  t h  where k represents the k--- nodal p o i n t  and j represents t h e  j--- time plane, h  i s  

the  t ime s tep  and hr i s  t h e  spac ia l  g r i d  spacing. 

The d i f f e r e n c e  operators i n  equat ions (18) are w r i t t e n  t o  t he  o rde r  o f  

the  g r i d  spacing squared and t o  t he  order  o f  t h e  t ime s tep  squared. Note, however, 

t h a t  s i m i l a r  t o  t he  f l u i d  p o r t i o n  the  order  o f  e r r o r  i n  t h e  t imewise d i r e c t i o n  i s  

reduced by one a f t e r  a  number o f  t ime steps. 

The l o c a l  v e l o c i t i e s  of t he  membrane are  then determined from a backward 

d i f f e r e n c e  opera tor  app l i ed  t o  t he  d e f l e c t i o n s  . 

t h  t h  where V i s  t h e  instantaneous v e l o c i t y  o f  t h e  K- nodal p o i n t  a t  t he  j- t ime 
k  , j  

step. 

I n i t i a l  condit* ions must be prescr ibed f o r  bo th  the  d e f l e c t i o n  and v e l o c i t y  

on the  membrane. The i n i t i a l  c o n d i t i o n  on v e l o c i t y  i s  used t o  de f i ne  Wi 
9 -  1  

f o r  

the  i n i t i a l  t ime cyc le  as f o l l o w s :  

A d iscuss ion  o f  t he  topo log i ca l  aspects o f  t he  computer method together  

w i t h  the procedures f o r  s o l v i n g  the  f l u i d  model equat ions and the  coupl ing o f  t h e  

f l u i d  and s t r u c t u r e  models i s  presented i n  t h e  f o l l o w i n g  sec t ions .  



TOPOLOGICAL ASPECTS 

A feature of the present method i s  that the computer program i s  able t o  
sense a moving boundary, such as a parachute, and consequently, i t  i s  able t o  

divide the fluid flow f ie ld  into a number of non-interacting regions. For example, 

i f  an impervious parachute i s  under consideration, the flow on the inside and o u t -  

side of the parachute does not interact  except near the mouth and the vent. The 

method consists of approximating the parachute by a number of connected s t raight  

l ine segments whose positions are a function of time. The equation of one of 

these segments i s  used to  decide on which side of the parachute a particular point 

l i e s .  In th is  manner i t  i s  possible to insure that a l l  points used in a spacial 

partial  derivative approximation are on the same side of the parachute and also to  

insure that  the ent i re  numerical conoid of dependence of a point l i e s  on  the same 

side of the parachute. The technique i s  similar to  that  presented in re f .  3. 

SOLUTION OF FLUID FINITE DIFFERENCE EQUATIONS 

The f i n i t e  difference equations are solved a t  each time plane t o  yield 

values of the dependent variables on the physical discontinuity (parachute or 

membrane) and also a t  points on a rectangular grid superimposed on the flow f ie ld .  

The solution a t  various locations in the f ie ld  requires the consideration of two 

classes of points: those that  l i e  sufficiently f a r  away from a discontinuity and 

hence have a fu l l  conoid of dependence, and those points that l i e  on or near a 

discontinuity and therefore have a partial  conoid of dependence. The numerical 

representation of the equations and the procedures for  handling these two classes 

of points are discussed in the following sections.  

Points Having a Full Conoid of Dependence 

For points having a fu l l  conoid of dependence, four bicharacteristics 

and the part ic le  path are required to  approximate the conoid. The values fo r  Qi 

are chosen, equally spaced, to  be 0 ,  n/2, n ,  and 3n/2, as shown on figure 1.  



The val ues of €Ii are chosen from stabi l  i  ty considerations . The calculation requires 

the choice of a point ( r o ,  z,) a t  which the solution i s  desired in the new time 

plane. The location ( r i  z i )  in the previous time plane of the characteristics 

which pass through ( r  z,) may then be determined from equations (11)  and ( 1 2 ) .  

I t  i s  possible to find a  point ( r i  , z i )  for which u i  , v i  , and ci sa t i s fy  equations 

(11) and (12) since values of a1 1 dependent variables are specified on the grid and 

on the discontinuities in the previous time plane. However, the solution of equa- 

tions ( 1  1 )  and (12)  i s  complicated by the fac t  t h a t  there i s  no expl ici t  re1 ation 

tying ( r i  , z i )  t o  ( U i  , V i  , ci ) in a  given time plane. I t  i s  therefore necessary t o  

choose some t r i a l  location for  a  bicharacteristic ( r i  , z i )  and use an i te ra t ive  

Procedure (such as the Newton-Raphson method) to  determine the actual coordinates 

r i  and  zi . Once the coordinates ri  and z i  are established, 1 inear interpolation 

i s  performed between the four surrounding grid points (or  discontinuities) in the 

r - z plane to determine the values for  a l l  the required dependent variables a t  

( r i ,  Z i ) .  

Substituting these values into the four compati bi l i  ty equations and the 

part ic le  p a t h  relation and reducing gives equations for  Po, Uo, and Vo of the form. 

A O O 2  + B o o  + C = 0 

where : 

The equations for P o ,  U o ,  V o 3  f o r  a l l  the types of points, considered, may 

be written in th is  form, however, the definition of the coefficients A ,  B ,  C ,  and 

C1 - C 6  will be a  function of the type of point considered. The appropriate 

coefficients are given in re f .  5 .  



Points Having a  Par t ia l  Conoid of Dependence 

Points lying on a  d iscont inui ty :  Points lying on a  discontinuity in 

t h i s  analysis  are of two types: points on the axis of symmetry, and points on the 

membrane o r  parachute. 

Field points on the axis of symmetry: The solution i s  accomplished by a  

re f l ec t ion  technique; t h a t  i s ,  the b icharac te r i s t i c  angles 8 = 0 and n are  symmetri- 

c a l l y  placed with respect t o  the axis  ( see  f igure  1 ) .  Thus, the information ob- 

tained f o r  b icharac te r i s t i c  8 = n i s  a l so  used f o r  8 = 0 ,  in  the pert inent  equations. 

The numerical equations f o r  points on the  axis must be modified t o  account f o r  the 
U f a c t  t h a t  on the axis the r t e r m  becomes: 

The equations fo r  Po '  U o ,  and Vo a re  the same as equations (20 ) ,  ( 21 ) '  and ( 2 2 )  

with new def ini t ions  f o r  the coef f i c ien t s .  

Points on the  membrane o r  parachute: In t h i s  case the or ienta t ion of the 

membrane o r  parachute controls  the portion of the conoid which l i e s  in the appro- 

p r i a t e  region and the  original  s e t  of 8 = 0 ,  1112, n ,  and 3n/2 a re  not applicable.  

A routine has been designed t o  allow the program t o  f ind the  b icharac te r i s t i c  angles 

which correspond t o  the  boundary. The appropriate b icharac te r i s t i c s  are  then 8 = 

$3, $3 - n/2, - @, and n/2 - $3 where $3 i s  an angle measured from the  normal t o  the 

discontinuity.  (See f igure  2 )  The angle @ i s  assumed t o  be 213 of the way between 

the normal and the b icharac te r i s t i c  angle t o  the c loses t  d iscont inui ty .  The 

compatibil i ty re la t ions  ut i  1  ized a re  equations (14) and (16) with the following 

modification. 

Since the points are  on a  impervious membrane, the  r e l a t i ve  f l u id  velocity 

normal t o  the membrane wil l  be zero. The velocity components of the membrane a re  

known quan t i t i e s  and, therefore ,  the  veloci ty  of the f l u id  may be determined. The 

additional re la t ionships  needed a re :  
- - 
U = Uf - u,,, 



- 
where a1 1 velocity components a re  measured in the  5, ri reference;  U ,  V are the 

- - 
velocity components of the f l u id  re la t ive  t o  the membrane; Uf ,  V f  the velocity 

components of the f l u i d ;  and Urn, \ the velocity components of the membrane. 

The pressures and ve loc i t i e s  are evaluated, in an i ne r t i a l  reference 

frame which moves a t  the  velocity of the physical boundary a t  the point under 

considerat ion,  by solving equations (20) and (22) with V subst i tu ted f o r  V .  Thus, 

the t o t a l  motion of the  f l u i d  i s  obtained by adding the velocity of the boundary 

t o  the r e su l t s  of equations (20) and (22) .  

Points on the  membrane o r  parachute and a l so  on the axis of symmetry: 

The procedure here i s  bas ical ly  the  same as the previous section with the use of a 

re f l ec t ion  procedure ( see  f igure  2 ) .  The re f lec t ion  technique i s  used in a s imi lar  

manner to  the f i e l d  points  on the axis except t ha t  two points are  now ref lec ted 
U with respect  t o  the membrane normal. Additionally: the ; term must be modified 

as follows: 

Since there  are no r e l a t i ve  velocity components d t  t h i s  point only equation (20) i s  

requi red. 

Points lying near a discontinuity:  The procedure followed here i s  s imi lar  

t o  t h a t  f o r  points lying on a discontinuity except t h a t  the velocity normal t o  the 

discontinuity does not vanish and consequently one addit ional  charac te r i s t i c  i s  

required. The appropriate angles measured from the local normal t o  the membrane 

a re  8 = z/2, -n/2, D/4, - n / 4 ,  and 0 (see  f igure  3 ) .  If  the point i s  on the 

axis the ref lec t ion technique i s  again used. 

COUPLING OF FLUID AND STRUCTURE MODELS 

The coupling of the computer programs f o r  the f l u id  f i e l d  and the membrane 

i s  done in an impl ic i t  manner. The steps i n  the coupling process f o r  a given time 

cycle are  as follows: 



1, The d e f l e c t i o n  and v e l o c i t y  a t  each nodal p o i n t  on t he  membrane a re  d e t e m i n e d  

from t h e  pressure d i f f e r e n c e s  across t h e  membrane and l o c a l  v e l o c i t i e s  on t h e  

membrane a t  t h e  p rev ious  two t ime s teps.  

2 ,  The pressures and v e l o c i t i e s  o f  t h e  f l u i d  p a r t i c l e s  ad jacen t  t o  t h e  membrane 

a re  c a l c u l a t e d  a t  t he  p o s i t i o n s  determined i n  t h e  p rev ious  s tep .  

3. D e f l e c t i o n s  and v e l o c i t i e s  on t he  membrane a re  again c a l c u l a t e d  us ing  t he  

average o f  t he  pressure a t  t h e  beginn ing o f  t h e  t ime  c y c l e  and t h e  pressure 

c a l c u l a t e d  a t  t h e  updated membrane p o s i t i o n s  . 
4. Step 2  i s  repeated and a  new va lue f o r  t h e  average pressure du r i ng  t h e  t ime  

s tep  i s  computed. Th is  average pressure i s  compared w i t h  t h e  average 

pressure used i n  s tep  3. A change i n  pressure l e s s  than  o r  equal t o  1% o f  

t h e  average pressure from s tep  3 i s  used as a  c r i t e r i o n  f o r  convergence. I f  

convergence i s  n o t  es tab l i shed ,  s teps 3 and 4  a re  repeated u n t i l  convergence i s  

a t t a i n e d  o r  u n t i l  a  g i ven  amount o f  i t e r a t i o n s  has been exceeded. Exceeding 

o f  t h i s  l i m i t  w i l l  cause t h e  program t o  s top.  

5. The pressures and v e l o c i t i e s  a re  c a l c u l a t e d  a t  each p o i n t  on t h e  r e c t a n g u l a r  

g r i d  which has been superimposed on t he  f l o w  f i e l d .  

The maximum number o f  i t e r a t i o n s  f o r  s teps 3 and 4  has teen s e t  as 7, however, w i t h  

t he  t ime s tep  p r e s e n t l y  used no more than  2 i t e r a t i o n s  have been requ i red .  

RESULTS AND DISCUSSION 

A p a i r  o f  cases a re  presented t o  i l l u s t r a t e  the  r e s u l t s  o f  t h e  p resen t  

method. The f i r s t  i l l u s t r a t e s  t h e  f l o w  i n  and around a  parachute du r i ng  some 

stage i n  i t s  i n f l a t i o n  and t h e  second i l l u s t r a t e s  a  f l u i d - s t r u c t u r e  i n t e r a c t i o n  

problem. I n  both t h e  cases considered, t h e  f l u i d  i s  assumed as an i d e a l  gas 

w i t h  y = 1.4, f r e e  stream pressure o f  14.7 lbs. / in. ' ,  f r e e  stream v e l o c i t y  o f  

10,000 i n . / s ,  t h e  spac ia l  g r i d  i n  t he  f l o w  f i e l d  was 3 i n .  by 3 i n . ,  and t h e  t ime  

s tep  h  was 7.5 x 1 0 ~ ~ s .  The t ime s tep  i s  approx imate ly  60% o f  t he  s t a b i l i t y  l i m i t  

as p r e d i c t e d  by t h e  Courant F r e i d r i c h s  & Lewy c r i t e r i o n  f o r  t h e  f r e e  stream. 



Parachute Configuration 

For this  case, the parachute i s  assumed rigid and in the form of an 

O'Hara shape, as i l lus t ra ted  in figure 4.  The O'tlara shapes provide a f i r s t  

order approximation to  the geometry of an inf lat ing parachute, by assuming that  

a t  each stage in the deployment the canopy may be represented by a combination of 
2 simple geometrical shapes, a spherical section and a truncated conical section. 

In the numerical analysis, the canopy i s  approximated by a number of s t raight  
sided truncated conical segments. 

The calculations were run on a 100 in.  diameter parachute with an in l e t  
diameter of 40 in. The canopy was assumed to  be non-porous and i t  was not vented 

a t  the top. The parachute was represented by 10 points. The aerodynamic grid 

i s  39 in.  by 57 in. in the radial and axial directions respectively. 
Figure (4b) i s  a section taken through the axis of symmetry of figure (4a ) .  

This figure shows the rigid parachute in the aerodynamic gr id ,  the in i t i a l  velocity 

distribution and the separated zone. The velocity, as shown in figure (4b) ,  i s  

assumed to be zero in the region above the lowest point on the parachute. The 

region below th is  i s  given an i n i t i a l  axial velocity V f  of 10,000 in. /s  and zero 

radi a1 velocity . 
Flow separation i s  assumed t o  occur in the region downstream of the 

maximum radius of the parachute and the pressure in th i s  region i s  taken to  be 
ambient. Since the pressure i s  prescribed in th i s  region, calculations are not 

performed outside the parachute downstream of i t s  maximum radius. 
A s e t  of sample resul ts  i s  given in figures 5 to  8. These figures are 

copies of CALCOMP plots of the data from the computer program. Each figure i l l u s -  

t ra tes  the pressure on the parachute and the velocity a t  each point in the aero- 
dynamic gr id.  The velocity i s  represented by a vector emanating from the point 

under consideration. The pressure on the parachute i s  plotted normal to  the 

parachute. Velocity and pressure references are given on each figure for  

convenience . 



The resul ts  fo r  cycle 20 ( t  = 1.5  x 1 0 - ~ s )  are given in figure 5 .  One 

apparent d i f f icu l ty  that  can be seen, however, i s  that the radial component ~f 

velocity i s  larger than expected in areas such as that  outside the parachute, This 

results from a poor  choice of boundary condition on the outermost radial gr id ,  and 

has been fixed in the more recent version of the program. A t  th i s  time, the 

velocity vectors and pressures indicate that  the main pressure pulse has not quite 

reached the top of the parachute, and the pressures in th is  area are ambient. The 

small velocity vectops near the top of the parachute are due to  numerical diffusion. 

Figure 6 shows the flow f i e ld  a t  the cycle 30 ( t  = 2.25 x 1 0 ~ ~ s )  ju s t  

prior to reflection of the main pressure pulse from the top of the parachute, and 

the pressures have increased to  approximately 29 psi near the t o p .  

Figure 7 shows the flow f i e ld  a t  cycle 40 ( t  = 3.0 x I O - ~ S )  following the 

reflection of the main pressure pulse. The region near the top of the parachute i s  

seen t o  be stagnated with velocities in th is  area due only to  random numerical 

error .  

Figure 8 shows the f i e ld  a t  a s t i l l  l a t e r  time, cycle 45 ( t  = 3.37 x 10e3s) 

The stagnation region has grown over that  of Figure 7 ,  however, a comparison of 

figures 7 and 8 shows that  the pressures on the parachute are essentially the same 

and consequently equilibrium may be assumed t o  ex is t .  These pressure dis t r ibut ions 

compare in form to those reported in re f .  6 .  

Fluid-Membrane Interaction 

The problem under consideration i s  the interaction of a uniform f ree  
5 2 3 stream of a i r  and a 54 in .  diameter membrane of mass per unit area 10 I b .  s / i n .  . 

The membrane i s  subjected to  a uniform tension of 2125 lb. / in .  As shown in r e f .  5, 

the numerical scheme will induce pressure transients in areas of severe gradients 

of pressure or velocity in the flow f i e ld .  In order to eliminate the transients 

on the membrane, a s tar t ing solution has been used. This procedure allows part  of 

the flow f i e ld  to  develop before the membrane i s  moved. The s tar t ing solution used 

assumes that  the f luid particles on the membrane and one grid immediately in front  



2 of the membrane are stagnated and have a pressure (39,75 I b , / in .  ) obtained from a 
one-dimensional case where the f luid i s  stopped by the plate .  The i n i t i a l  velocity 

of the membrane i t s e l f  i s  assumed to be zero. This flow f i e l d  corresponds physi- 

cally to  the ease where a plug was placed behind the membrane to  keep i t  rigid and 

then suddenly removed some time a f t e r  the f luid struck the plate .  See figure ( 9  ) .  

The pressure on the upstream side of the membrane i s  maintained as ambient and 

calculations are n o t  performed in th is  area. 

Figure (10) presents the pressure on the axis of symmetry on the membrane 
as a function of time. I n  the i n i t i a l  few computational time cycles, a non-physical 

pressure r i se  occurs due to  numerical diffusion. The pressure drop during the next 

few cycles i s  explained by the f ac t  that  as the membrane accelerates upwards, the 

f luid par t ic les  next to  the membrane gain in velocity, thus, reducing the i r  pressure. 

When the acceleration of the membrane becomes negative, the f lu id  particles are 

slowed down and consequently, the pressure r ises  again to  a peak. The peak occurs 

just  a f t e r  the maximum deflection of the membrane. As the membrane moves in the 

opposite direction the pressure f a l l s  fo r  the next few cycles. Following t h i s ,  

there i s  a dwell in pressure which will be discussed l a t e r  with the aid of figures 
(13) ,  (14) ,  and (15).  I t  resul ts  from the fac t  that  as the membrane pushes f luid 

back into the flow f i e l d ,  i t  tends to  swirl and form a low f lu id  velocity zone in 

front of the membrane. The pressure then decreases monotonically, with one s l igh t  

bump, until  a minimum i s  reached. This minimum occurs s l ight ly  l a t e r  than the 

minimum deflection point. A scale for  pressure coefficient C p  i s  also shown on the 

plot .  The pressure coefficient i s  seen to  range from 3.2to 7.2during the f i r s t  

deflection cycle of the membrane. 

Figure (11) i l l u s t r a t e s  the deflection of the membrane point on the axis 

as a function of time. This solution i s  compared with the solution which would 

have been obtained i f  the stagnation pressure of 39.75 lb . / in .*  had been used. Both 

curves are similar in shape, however, the constant pressure case has a larger 

maximum deflection and has a l a t e r  time for  the occurance of t h i s  maximum deflection. 

This i s  explained by the f ac t  that  in the interaction problem, the pressure on the 
membrane decreased as the membrane accelerates upward. The next minimum for  the 

deflection i s  also lower than the interaction solution resulting from the fac t  

that  as the membrane returns, the pressure i s  above the stagnation pressure. 

I t  i s ,  however, interesting t o  note that  the ra t io  of the time between 



maximum and minimum deflection to time for  f i r s t  maximum deflection i s  the same for  

both solutions, No explanation i s  offered for t h i s ,  in f a c t ,  i t  may be for tui tous,  

Figure ( 1 2 )  shows the deflected shapes of the membrane a t  various times, 

A t  t = .75 ms, the membrane i s  f l a t  except near the outer edge since the signal 

that the boundary has zero deflection has not as yet reached the ent i re  membrane. 

The curves fo r  t = 1.5 and 1.8 ms show an almost f i r s t  mode type shape as the 
membrane approaches i t s  maximum deflection. The curve for  t = 1.8 ms i s  in fac t  

the maximum deflection. The curve for  t = 4.2 ms i s  approximately a t  the minimum 
for  the f i r s t  cycle and i s  seen to be also in the f i r s t  mode shape. This i s ,  

however, no guarantee tha t  the membrane will continue to  keep th i s  shape for  l a t e r  

cycles. In f ac t ,  i t  appears that there i s  a tendency for  the l a s t  few cycles for  
the point on the axis to  drop below i t s  neighboring points thus indicating a con- 
t r i  bution of the higher modes of vibration. 

Figures (13) ,  (14) ,  and (15) i l l u s t r a t e  the velocities in the f lu id  

flow f i e l d  and of f lu id  particles on the membrane a t  times t = 1.64, 2 . 1 ,  and 
3.0 ms. Figure (13) shows tha t  a t  early times before maximum deflection, the flow 

f i e ld  i s  directed towards the axis of symmetry as the f lu id  flows in to  f i l l  the 

additional area created by the deflecting membrane. Figure (14) i 1 lustrates  the 

velocity vectors shortly a f t e r  the point on the membrane on the axis has reversed 
direction and the membrane t r i e s  to  push the f luid back into the f ree  stream. 

Note, however, that  the outermost points on the membrane are s t i l l  traveling 

upwards and that the f luid in this  area i s  traveling toward the axis.  The f lu id  

particles pushed back into the f ie ld  by the membrane encounter forward moving f lu id  

particles and consequently a swirl near the axis i s  created. The f luid in th i s  

swirl has a low velocity causing the pressure dwell noted in figure (10). Note also 

that there i s  a relat ive stagnation point on the membrane a t  the point where the 
inrushing f luid encounters the fluid being pushed o u t  from the axis.  The large 

values of radial velocity near the rigid wall on figure (14) and the next figure 

are caused by the f ac t  tha t  the edge of the computational grid i s  too close to  

the edge of the membrane and may easily be fixed by enlarging the computational 

grid. Figure (15) i l l u s t r a t e s  a l a t e r  time when the stagnation point on the mem- 

brane has moved out to  the edge of the membrane and the en t i re  membrane i s  now 



pushing f l u id  back in to  the main stream, The f igures  i l l u s t r a t e  velocity vectors 

only par t  way in to  the flow f i e l d  since the ve loc i t i e s  below t h i s  are  approximately 

f ree  stream a n d  consequently would be out of the scale  f o r  the present p lo t s ,  

CONCLUDING REMARKS 

A numerical method of analysis  f o r  determining the  in teract ion of a 

f l u id  and a s t ruc tu re  has been developed and programed. The method i s  par t  of 

the ear ly  stage of development of a computer program f o r  analyzing the s t r e s s e s  in 

an i n f l a t i ng  parachute. The method i s  based on an analysis  of the  flow f i e l d  

using concepts from the  numerical method of charac te r i s t i c s  coupled imp1 i ci t l y  with 

an analys is  of the dynamic response of a l i nea r  membrane. The approach i s  unique 

in t ha t  provisions have been made t o  recognize boundaries, such as a parachute, in 

the flow f i e l d  and consequently physical ly  non-interacting regions may be d i f f e r -  

ent i  ated.  

The method has been used t o  generate flow f i e l d s  i n  and about a r i g id  

shape which approximates a parachute during some stage in i t s  deployment and a l s o  

to analyze the in teract ion of a membrane and a uniform f r ee  stream. 
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F i g u r e  1 - Flow F i e l d  Conoids of Dependence 
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Figure 2 - P a r t i a l  Conoids - P o i n t s  on t h e  ph.vsi.ca1 boundary 



Figure 3 - P a r t i a l  Conoids - P o i n t s  near  a p h y s i c a l  boundary 
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Figure 4 - Parachute Configuration and Initial Condition 
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F i g u r e  5 .- V e l o c i t y  f i e l d  and p r e s s u r e  on pa rachu te  a t  computa t iona l  
c y c l e  20  f o r  example problem. 
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F i g u r e  6 - V e l o c i t y  f i e l d  and p r e s s u r e  on pa rachu te  a t  computa t iona l  
c y c l e  3Q for example problem. 
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Figure 7 - Velocity field and pressure on narachute atcomputational 
cycle 40 for example problem, 
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Figure 8 - Velocity field and pressure on parachute 

cycle 45 for example problem. 

at computational 
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F i g u r e  9 - S e c t i o n  th rough  t h e  a x i s  of symmetry f o r  t h e  example fluid-membrane 
i n t e r a c t i o n .  
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~igurell - Deflection of the membrane point on the axis of symmetry as a 

function of time for the example interaction problem. 



Figure 12 - Deflected shapes of the membrane at various times for the 
example interaction problem. 



Velocity scale 2,000 ips 

Radial coordinate - in 

~igure 13 - velocity f i e l d  of the f l u i d  below the 
membrane at cycle 22 (t = 1.64 msj, for 
the example interaction orohlem. 
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Figure 14 - Yelocity field of the fluid below the 
membrane at cycle 28 Ct = 2.1 ms), for 
the example interaction problem. 
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Figure 15 - Velocity field of the fluid below the 

membrane at cycle 40 It = 3.0 ms) , for 
%he example interaction problem, 




